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Abstract

Computer simulations provide useful predictions of complex system dynamics, but they can-
not be easily inverted for use in control and optimization. When the computational time to run
a single prediction is high, approximate models with reduced computation are required. These
models must be straightforward to build and have quantified bounds on their accuracy. With
support from this grant two automated methods were developed for building empirical models
from simulation data. These methods were subsequently applied to stochastic simulations of
nanoscale dynamics.

In the first method, the simulation dynamics are modeled on a discrete state space, with
input-dependent transitions between the states. This approach was used for dynamic optimiza-
tion of a gallium arsenide surface deposition process, which was not computationally feasible for
the full simulation. The second method, based on Gaussian process modeling, was developed to
further improve the prediction accuracy of the first method, which was limited by the discrete
state space. Moreover, Gaussian process modeling enabled a quantification of the prediction
variance, which is necessary so that the dynamic model can be used with confidence in control
applications.

1 Executive Summary

Complex dynamic simulations are becoming an increasingly central tool in the engineering of ad-
vanced technology, and this is just as true in dynamics and control as it is in other areas such
as optimization and design. Predictions from simulations can aid in understanding the emergent
behavior of a collection of many subsystems, and can be used to validate model predictions and
engineering designs. This emergent behavior may stem from a collection of atoms, air vehicles, or
human beings.

Simulation alone is not sufficient for the guaranteed robust optimal performance of engineered
systems. If simulations for complex systems are to be used in the context of control and/or opti-
mization, there must be a mathematically rigorous framework in which to use these models and
simulations. The performance properties and limitations must be proven, just as they are proven
for linear systems or for certain low-order deterministic nonlinear systems.

The focus of this specific grant is on stochastic simulations consisting of many-body interactions
in nanoscale dynamics, with applications including high-power high-speed transistors and nanopar-
ticle catalysts for energy conversion. Because the dynamics are stochastic, it is not possible to rule
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anything out for certain, and one can only use statistical measures to quantify performance. This
is a departure from much of control theory, in which uncertainties are bounded inside a ball of
radius δ and performance is bounded inside a ball of radius ε. This assumption of bounded uncer-
tainty is not applicable for many realistic sources of uncertainty—a more typical quantification of
uncertainty is the normal (or Gaussian) distribution, in which any outcome is possible, but certain
outcomes are more probable. Confidence intervals can then be used to state that an outcome should
fall within a specified range with a certain probability.

The overarching goal of this grant is to develop approximate statistical models that reproduce
the dynamic evolution in many-body simulations of atomic interactions. Models with reduced
computation are needed for use in control and optimization, since a single stochastic realization of
the many-body system may take days, weeks, or even longer on a high performance computer. If
the underlying models are to be used for control and optimization, the computational time must be
reduced dramatically. However, the model accuracy must not be sacrified, at least not beyond the
engineering accuracy that is required. Thus, in this research the investigators have developed and
implemented a stastical modeling framework that not only predicts the expected mean behavior
from the atomic-scale simulation, but also the uncertainty in the prediction. This uncertainty
prediction is a key unique feature of the modeling approach, and is required if the approximate
models are to be used to engineering tasks like optimization and control.

The basic dynamic equation for the empirical model is

x[k + 1] = F (x[k], u[k]) (1)
t = kΔt

which is sometimes referred to as solution mapping. The goal is then to find the function F , and
further to estimate the uncertainty in the prediction x[k + 1].

One Ph.D. thesis was completed during the duration of this grant. Cihan Oguz graduated
in December 2007, with the thesis entitled “Control-oriented modeling of discrete configuration
molecular scale processes: Applications in polymer synthesis and thin film growth.” This work
was begun under a previous AFOSR grant (FA9550-04-1-0183) and continued with support by the
current grant (FA9550-07-0161). The specific outcomes of this thesis include

1. An automated procedure for generating an approximate dynamic model using stochastic
simulation data, consisting of the following steps:

• The high dimensional output of an atomic-scale simulation contains many symmetries
and correlations. The independent degrees of freedom in this high dimensional output
can be identified and quantified using a pair distribution function (analogous to a Fourier
transform) coupled with principal component analysis.

• A discretization of the state is performed on the subspace of reduced dimension, using
clustering techniques.

• A statistical model is constructed between the discrete states, by defining transitions
between the states. These transitions may depend upon the control inputs, and are
stored in a matrix, yielding the model structure:

x[k + 1] = A(u)x[k] (2)

• The primary computational requirements are associated with the simulations used to
identify the model. The resulting model is a linear discrete-time model, enabing virtually
instantaneous evaluation. Thus, real-time application in control is practical.
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2. Demonstration of this modeling approach in a particular example: a lattice Monte Carlo
simulation of ultra-high vacuum deposition of gallium arsenide, a key component of high-
speed transistors for communications.

• The number of independent degrees of freedom observed in the simulation output may be
small, indicating an underlying low-dimensional manifold on which the dynamics evolve.
In the gallium arsenide example, five principal components were required to accurately
reconstruct and then reproduce the dynamics.

• Because the simulated trajectories lie in a nonlinear submanifold of the five-dimensional
space, less than 200 discrete states were sufficient to cover and predict the dynamic
evolution of the deposition process. A self-organizing map was used to perform the
clustering.

• A model constructed according to this automated procedure was used for dynamic op-
timization of the process recipe. The time-varying gallium flux was used as the process
input, and the minimum time trajectory to reach a desired surface structure was com-
pute via a dynamic optimization. This optimization would have been infeasible using
the full stochastic simulation. However, the optimal trajectory from the reduced model
agreed well with stochastic realizations from the full gallium arsenide simulation.

A primary limitation on the accuracy of the approximate model was the discretization of the
continuous space. As the number of discrete states is increased, the accuracy improves, but the time
required to build the reduced model scales linearly with the number of discrete states, ultimately
limiting the number of states that can be included in the approximate model. To further improve
the prediction accuracy, a different approach was proposed: conceptually, the idea is to interpolate
among the discrete set of states in the Markov-chain model.

A second limitation of the method by Oguz is the lack of quantification for the prediction
uncertainty in the approximate model. The average error was evaluated and quantified over many
typical trajectories, by comparing predictions between the approximate model and the full atomic-
scale simulation (having the same initial condition and control input trajectory). However, the
uncertainty in the prediction should depend upon the initial state, the control input, and the time.

To address these two limitations, a statistical modeling framework based on Gaussian process
modeling (GPM), also known as “kriging,” was proposed and implemented under this grant. This
approach is the thesis topic of PhD student Andres Hernandez. The key idea in GPM is a two-level
modeling approach. First, a deterministic model is selected, which may have unknown parameters
that are fit to the stochastic simulation output. This is the typical regression problem. However, in
a GPM, a second modeling term is added, which models the residual between the simulation output
and the first model as a spatially correlated term. This is logical, since the residual between two
smooth models should be spatially correlated, and not independent and white, as in the underlying
assumption of least-squares fitting. The resulting model will interpolate the sampled data points
when the original samples are assumed to be noise-free; otherwise the model prediction interpolates
the expected mean output. In either case, the GPM also enables computation of the prediction
variance. Both features are extremely important for black-box empirical modeling.

Gaussian process modeling is a demonstrated and powerful modeling technique in geostatistics,
and more recently has been applied extensively in engineering design. However, it is not been
exploited in dynamical systems modeling. Recent studies led by Rasmussen [1] show the potential
for GPM in dynamics systems modeling, but only for deterministic systems of dimension two.
The present work demonstrates the power of GPM in reduced-order modeling, via application in
nanoparticle synthesis dynamics.
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2 Personnel and Publications

Three graduate students were supported throughout the grant period:

• Cihan Oguz (PhD 2007) was supported during the first year of the grant. His thesis, entitled
“Control-oriented modeling of discrete configuration molecular scale processes: applications
in polymer synthesis and thin film growth,” was the culmination of support from this grant
and from the earlier AFOSR grant FA9550-04-1-0183 (2004–2007) from the Dynamics and
Control program. This thesis is available electronically from the Georgia Tech library system:
http://smartech.gatech.edu/handle/1853/19867.

• Jonathan Rawlston (PhD defense March 2010) was supported part time to perform the
stochastic simulation aspects in this grant. His thesis is entitled “Multiscale modeling of
free-radical polymerization kinetics.”

• Andres Hernandez was supported by this grant for two years, until the end of the grant in
November 2009. His PhD thesis topic is kriging for empirical modeling of nanoscale stochastic
dynamics.

The research supported by the grant led to the following 5 journal publications and 2 peer-
reviewed conference papers:

• C. Oguz and M. A. Gallivan, “Optimization of a thin film process using a dynamic model
extracted from molecular simulations,” Automatica, 44(8), 1958–1969 (2008).

• J. Rawlston, J. Guo, F. J. Schork, and M. A. Grover, “A kinetic Monte Carlo study on the
nucleation mechanisms of oil-soluble initiators in the miniemulsion polymerization of styrene,”
Journal of Polymer Science Part A Polymer Chemistry, 46(18) 6114–6128 (2008).

• A. Hernandez Moreno and M. Grover Gallivan, “An exploratory study of discrete time state-
space models using kriging,” Proceedings of the 2008 American Control Conference 3993–3998
(2008).

• C. Oguz, M. A. Gallivan, S. Cakir, E. Yilgor, and I. Yilgor, “Influence of polymerization
procedure on polymer topology and other structural properties in highly branched polymers
obtains by A2+B3 approach,” Polymer, 49, 1414–1424 (2008).

• A. F. Hernandez and M. A. Grover, “Stochastic dynamic predictions using kriging for nanopar-
ticle synthesis,” Proceedings of the 10th International Symposium of Process Systems Engi-
neering, Bahia, Brazil, August 2009.

• J. Rawlston, F. J. Schork, and M. A. Grover, “Multiscale modeling of branch length in butyl
acrylate,” Macromolecular Theory and Simulations, accepted for publication (2010).

• A. F. Hernandez and M. A. Grover, “Stochastic dynamic predictions using Gaussian pro-
cess models for nanoparticle synthesis,” invited paper submitted to Computers & Chemical
Engineering (2010).

Several additional publications on this research are expected, including two currently in preparation
by Hernandez and Grover and one currently in preparation by Rawlston and Grover.
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3 Synergistic Interactions

3.1 United Technologies

Professor Grover has fosted interactions and collaboration with United Technologies, which were ini-
tiated via the Dynamics and Control program at AFOSR. Through conversations with Dr. Andrzej
Banaszuk at AFOSR program reviews, Professor Grover began discussions with UTRC in the area
of empirical modeling of complex systems. Prof. Grover visited UTRC in 2007 and gave an invited
seminar, meeting with researchers in controls and in materials. This ultimately led to collaboration
with UTCPower in materials for fuel cells. Professor Grover first consulted with UTCPower, and
then was awarded a research contract to optimize the process inputs for a nanoparticle synthesis
process, using dynamic modeling and experiments. Consequently, this process became the primary
case study used now for the GPM study under this grant. She visited UTCPower and UTRC again
in late 2008, giving another invited seminar at UTRC and a progress report at UTCPower.

3.2 Air Force Research Laboratory

Professor Grover was awarded a United States Air Force Summer Faculty Fellowship in 2006,
which supported her work with the Materials and Sensors Directorates at Wright Patterson Air
Force Base in Dayton, Ohio (POC Dr. Donald Dorsey). The work focused on understanding
the degradation dynamics of high power transistors made from compound semiconductors, and
included modeling and directing of experiments. The nanoscale layers in the device exhibit unique
electronic phenomenon that cannot be described using continuum models. This work led to contin-
ued interaction and discussions with AFRL, and also with Georgia Tech professor Samuel Graham,
who performs transistor degradation experiments. Prof. Graham subsequently was also awarded a
USAF Summer Faculty Fellowship, and then used it to also work with Dr. Dorsey at WPAFB.

4 Gaussian process modeling

The work on GPM is summarized here, since the key publications on this aspect of the research
are not yet available in the archival literature.

4.1 Case study

As motivated by our collaborations with United Technologies, we apply the GPM approach for
empirical modeling to the dynamics of nanoparticle synthesis, specifically the deposition of platinum
nanoparticles on carbon nanotubes in a supercritical carbon dioxide process. The goal is to predict
the time-evolution of the nanoparticle size distribution, as well as the efficiency of the reaction and
the total amount of platinum deposited.

4.1.1 Precursor adsorption on nanotube

There are two stages in the deposition of the nanoparticles. First, the platinum precursor molecule
must be adsorbed onto the surface of the carbon nanotubes, after which the process inputs are
changed to induce a chemical reaction, releasing the elemental platinum so that it can self-organize
into nanoparticles on the carbon nanotube surface. Key experimental data used to build the model
are shown in Figure 1, along with model fits to this data.

If the platinum precursor is not soluble in the carbon dioxide, then the platinum cannot reach
the carbon nanotube surface or react efficiently. Thus, the solubility of the precursor must be both
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Figure 1: (left) Parameter fit for precursor solubility: k = 5.1, α = -9200 1/K, β = 32; (right)
Parameter fit for absorption isotherm: at 333 K, K1 = 3.7 gCO2/mgprec, Q0 = 42 mgprec/gsup; at
353 K, K1 = 35.4 gCO2/mgprec, Q0 = 54 mgprec/gsup.
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measured [2, 3] and modeled [4]. The Chrastil equation is used here to model the solubility S:

lnS = k ln ρCO2 +
a

T
+ b (3)

ρCO2 = fEOS(T, P ) (4)

The density of carbon dioxide comes from an equation of state (EOS) [5]. The units on S are (mg
PtMe2COD)/(cm3 CO2).

Once the solubility of the precursor mass has been verified, the adsorption of the precursor on
the carbon nanotube surface (CNT) must be predicted. An adsorption isotherm is used to quantify
the adsorption capacity of the CNT:

qeq =
K1Q0ceq

1 + K1ceq
(5)

using experimental measurements [3] to estimate K1 and Q0. The amount of platinum precursor
on the CNT is qeq, while the amount in the fluid phase is ceq.

The temperature dependence of the parameter K1 modeled by

K1(T ) = K0 exp
(−Ea

RT

)
(6)

with Ea=1.8×104 J/mol and K0=3.0×103 gCO2/mgprec.

4.1.2 Nanoparticle formation on nanotube

The formation of the platinum nanoparticles can be modeled with a birth-death process for Ci(t)
[6], where Ci is the concentration of nanoparticles with i atoms. The resulting population balance
model is

dCi

dt
= Gi−1Ci−1 − GiCi (7)

C(0, t) = 0 (8)
C(t, 0) = Rnuc(t) (9)

The kinetic rate constants used here are estimated from the experimental studies of Bayrakceken
and Erkey [7], to yield a mean particle diameter of 2 nm and a standard deviation of 0.5 nm. The
growth of the nanoparticles is modeled via a kinetic Monte Carlo stochastic simulation, according
to the stochastic simulation algorithm of Gillespie [8].

4.2 Key equations

Gaussian process modeling (GPM) is an empirical modeling approach for generalized linear regres-
sion models which formulates a local correlation between the residuals of the linear regression model
as a function of the location of the model inputs [9, 10]. This concept is not usually employed in
system identification and model reduction, in which the location of the experimental points is not
explicitly considered once the model has been identified. Frequently, the local correlation between
model inputs is described by the distance between them in a monotonically decaying function.
Other correlation functions includes dot products and linear terms that emphasize correlation over
specific locations in the input space and not just by the relative distance between points. Some
examples of correlation functions can be found in [1, 11]
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Assume there is a set D of n input/output pairs {Xi, Yi}, where Xi ∈ R
d , Yi ∈ R, i = 1 . . . n.

A usual distance-based covariance function to model the correlation between samples in the set is:

Vij (Xi,Xj) = σ2
c · exp

[
−1

2

d∑
k=1

(Xi,k − Xj,k)
2

�2
k

]
+ σ2

u · δij (10)

where δij is the Kronecker delta and θ =
[
σ2

c , σ
2
u, �2

1 . . . �2
d

]
are the kriging parameters that control

the features of the correlation. In particular, σ2
u is included to model the random noise component

of the function at each sample point.
By using this covariance function, a kriging prediction for a new input x0 is expressed under

the best linear unbiased estimator as [12]:

[y|x,D] ∼ N (ŷ (x,D) , Σy (x,D)) (11)

E [y|x,D] = ŷ (x,D) = hT (x) β̂ + vT (x,D)V −1(D,D)
[
Y − H(D)β̂

]
(12)

Σy (x,D) = V (x,x) − [
hT (x) vT (x,D)

] [
0 HT (D)

H (D) V (D,D)

]−1 [
h (x)

v (x,D)

]
(13)

where v is the correlation vector between x and the inputs in D using Eq.(10), h, H represents a set
of p regression functions evaluated at the unknown input and the inputs in D respectively, β̂ (θ) =(
HT V −1H

)−1
HT V −1Y is the generalized least-squares estimator of the regression coefficients and

Y = [Y1, Y2, . . . Yn]T .
A key feature of our GPM research is the use of a GPM in a recursive dynamic formulation,

which necessitates the consideration of uncertainty in the “input” x[k] to the function F , as in
Equation (1). Specifically, the general function input x has the following Gaussian distribution:

x ∼ N (x̂, Σx) , x̂ ∈ R
d, Σx ∈ R

d×d

This input uncertainty is accounted for by making a Taylor series approximation around the
input mean distribution x̂ and expanding Equations (12) and (13). Since uncertainty is not consid-
ered in the training set D, this symbol will be drop out from now on. For simplicity in the notation
and following derivation, the following notation is used.

Definition:

G ∈ R
p+n×p+n =

[
0 HT

H V

]

g (x) ∈ R
p+n =

[
h (x)
v (x)

]
Using G and g (x), Equations (12) and (13) become

ŷ (x) =
[
0 YT

]
G−1g (x) (14)

Σy (x) = V (x,x) − gT (x)G−1g (x) (15)

The application of the Taylor-series approximation to Equations (14) and (15) leads to the
following corrected expressions

ŷ (x) ≈ ŷ (x̂) + (x − x̂)T ∂ [ŷ (x)]
∂xi

∣∣∣∣
x=x̂

+
1
2

(x − x̂)T ∂2 [ŷ (x)]
∂xi∂xj

∣∣∣∣
x=x̂

(x − x̂)
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Σy (x) ≈ Σy (x̂) + (x − x̂)T ∂ [Σy (x)]
∂xi

∣∣∣∣
x=x̂

+
1
2

(x − x̂)T ∂2 [Σy (x)]
∂xi∂xj

∣∣∣∣
x=x̂

(x − x̂)

E [ŷ (x)] ≈ ŷ (x̂) +
1
2

d∑
i=1

d∑
j=1

Cov (xi, xj)
∂2 [ŷ (x)]
∂xi∂xj

∣∣∣∣
x=x̂

(16)

E [Σy (x)] ≈ Σy (x̂) +
1
2

d∑
i=1

d∑
j=1

Cov (xi, xj)
∂2 [Σy (x)]

∂xi∂xj

∣∣∣∣
x=x̂

(17)

From Equations (14) and (15), matrix differential calculus is used to estimate the corresponding
derivatives.

∂2 [ŷ (x)]
∂xi∂xj

=
[
0 YT

]
G−1

[
∂2 [g (x)]
∂xi∂xj

]
(18)

∂2 [Σy (x)]
∂xi∂xj

= −
[
∂2 [g (x)]
∂xi∂xj

]T

G−1g (x) −
[
∂ [g (x)]

∂xj

]T

G−1

[
∂ [g (x)]

∂xi

]
(19)

−
[
∂ [g (x)]

∂xi

]T

G−1

[
∂ [g (x)]

∂xj

]
− gT (x) G−1

[
∂2 [g (x)]
∂xi∂xj

]

The Taylor-series approximation depends on the derivatives of the function g (x). The definition
of derivatives for vectors in matrix differential calculus describes the derivative to each element in
the vector (different from the Jacobian vector or Hessian matrix, where the elements in the vectors
and matrices are based on the derivatives of a scalar function). Then, by definition

∂ [g (x)]
∂xi

∈ R
p+n,

∂ [g (x)]
∂xi

=
[
∂ [h (x)]

∂xi

∂ [v (x)]
∂xi

]
(20)

where
∂ [h (x)]

∂xi
∈ R

p,
∂ [h (x)]

∂xi
=

[
∂ [h1 (x)]

∂xi
,
∂ [h2 (x)]

∂xi
, · · · ,

∂ [hp (x)]
∂xi

]
is the first derivative of each of the p regression functions used in the GPM model respect to a
single xi entry in the input vector. This implies that each hi regression function must be explict
on the elements of the input vector x. Similarly

∂ [v (x)]
∂xi

∈ R
n,

∂ [v (x)]
∂xi

=
[
∂ [v1 (x)]

∂xi
,
∂ [v2 (x)]

∂xi
, · · · ,

∂ [vn (x)]
∂xi

]

where vk is the spatial correlation between the input vector x and a query point Xk in the training
data D, using a correlation function. In particular, Equation (10) is often employed to represent
the spatial correlation. This correlation function is known as Gaussian correlation function.

vk (x) = V (x,Xk) = σ2
c · exp

[
−1

2

d∑
k=1

(xi − Xk,i)
2

�2
i

]
+ σ2

u · δk

Using the same arguments presented previously, we can see that:

∂2 [g (x)]
∂xi∂xj

∈ R
p+n ∂2 [g (x)]

∂xi∂xj
=

[
∂2 [h (x)]
∂xi∂xj

∂2 [v (x)]
∂xi∂xj

]
(21)
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To complete the description of these derivatives, the first and second derivative expressions for
the Gaussian correlation function are given:

∂ [vk (x)]
∂xi

= V (x,Xk)
[
−(xi − Xk,i)

�2
i

]
(22)

∂2 [vk (x)]
∂xi∂xj

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V (x,Xk)
[
−(xi−Xk,i)

�2i

]2

+ V (x,Xk)
[
− 1

�2i

]
if i = j

V (x,Xk)
[
−(xi−Xk,i)

�2i

] [
−(xj−Xk,j)

�2j

]
if i �= j

(23)

4.3 Comparison of sampling strategies

The application of GPM in dynamic systems modeling can be viewed as the identification of a
mapping function of the state variables from one time to the next one, which is applied recursively to
predict dynamic trajectories. This modeling framework assumes that the one-step-ahead dynamics
can be represented using the Markov property, making the prediction dependent of the location of
the state variables in the state space. We refer to the one-step prediction as the “local prediction.”
Because the modeling framework describes the dynamic trajectory as a series of local predictions
at each discrete time step, a sequence of predictions is used to evaluate the overall or global
dynamic performance of the approximated model. We refer to this type of prediction as the “global
prediction.”

Depending on the different settings used to create the GPM, the accuracy of the approximated
model will change, both locally and globally. Table 1 summarizes the combinations of settings that
we used to construct the comparison of sampling strategies. A total of 168 potential combinations
have been evaluated. Because of the random component in the selection of sample points and the
nature of the kMC simulation as the source of information for model building, a single realization
of a particular combination of settings in not enough to capture the dynamics for the approximated
model. Each of the potential combinations has been repeated 10 times and the local and global
performance of the approximated model have been averaged over those realizations.

Settings Options
Number of sample points 30, 45, 60, 75, 90, 105, 120

Repetition level 1, 3, 5

Sampling strategy 1. From pre-collected points in dynamic trajectories
2. Random walk approach in convex hull

Regression Functions 1. Constant (Ordinary kriging, OK)
2. Forward stepwise regression, linear functions (Universal Kriging, UK)

Parameter Estimation Maximum likelihood estimation (MLE) or restricted MLE

Table 1: Summary of potential combinations to create approximated models, evaluated for local
and global prediction analysis.

4.3.1 Local Prediction Analysis

Figure 2 represents the graphical description of the local prediction analysis. A total of 100 input
points have been randomly selected over the relevant dynamic region defined by the convex hull of
the kMC simulations. The random selection over the multidimensional state space was made by
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a random walk approach, evaluating the inequality constraints that defines the region. For each
of the input points, a reconstructed version of the kMC state variables has been created. Using
the kMC information, a one-step-ahead kMC simulation has been replicated 5 times to create a
sample mean vector x̄ (k + 1) and sample variance vector S2

x (k + 1) that summarizes the repetition
information over the five state variables. These vectors are compared against the vectors of expected
mean prediction, Eq.(11), and prediction variance, Eq.(13), from each of the kriging models. The
Euclidean distance between the vectors is used as a local error metric to quantify the accuracy of
the approximated model. The local error metric (LEM) for the expected mean prediction is:

LEM =
1

10 · 100

10∑
r=1

100∑
j=1

⎡
⎣ 2

√√√√1
d

d∑
i=1

(x̄i (k + 1) [xj(k)] − E [x̂i (k + 1) |xj(k),Dr])
2

⎤
⎦ (24)

where the index r indicates different realizations of the same combination of settings to build the
approximated model. A similar expression can be derived for the sample variance and prediction
variance vectors.

( 1)x k +

( )x k

ˆ( 1) ( 1) | ( ),x k x k k⎡ ⎤+ → +⎣ ⎦x DE

2 2
ˆ( 1)( 1) ( ),x x kS k kσ +

⎡ ⎤+ → ⎣ ⎦x D

Figure 2: Graphical description of local prediction analysis. The plot shows a one-dimensional case
of the local prediction analysis but it can easily interpreted for multidimensional space.

The evaluation of the local error metric for different settings of the approximated model and
sampling strategies are presented in Figures 3 and 4. The presence of global regression functions in
the approximated model improves one-step-ahead prediction for all repetition levels and number of
sample points compare to the constant regression function. Once should expect to see a decrease in
the local error metric as the number of sample points increases, and this is confirmed by the figures.
Similar conclusions and numerical values can be obtained with both MLE and RMLE parameter
estimation methods.

Given that kriging is a distance-based empirical model, the spatial coverage of the input points
over the dynamic region is important for a good prediction. When a repetition level of 1 is used
to create the approximated model (i.e. no repetitions), there is a better coverage over the dynamic
region compared to the other repetition levels because the number of input points in the convex hull
is higher. This situation could explain why the local error metric is lower at low repetition levels.
This spatial coverage issue could be used also to explain the differences between the sampling
strategies. Since the information from pre-collected dynamic trajectories is used to create the
convex hull, it is likely that those points are at the boundaries of the convex hull, offering a poor
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performance in the interior of the region. On the other hand, the random walk could offer a better
coverage of the points because the procedure is exploratory over the constrained region.
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Figure 3: Local prediction analysis for different repetition levels using points from pre-collected
dynamic trajectories. Parameter estimator: MLE. (a) Expected mean vector. (b) Prediction
variance vector. — Ordinary Kriging, - - - Universal Kriging. RL = Repetition Level.

Surprisingly, the use of repetitions in the model does not improve the local prediction variance.
This is explained by the poor spatial coverage that a higher repetition level implies (remember
the trade-off between repetition level and number of input points in the convex hull) or by the
assumption that the noise component of the state variables is constant over the entire dynamic
region, according to the covariance function that is used in the approximated model, see Eq.(14).
Other covariance functions can be implemented to enhance the identification of the noise component
in the kMC simulation.

4.3.2 Global Prediction Analysis

Figure 5 is a graphical representation of the global prediction analysis. Global prediction analysis is
performed to evaluate the prediction capability of the approximated model over the operating space
of precursor mass and carbon nanotube mass at the beginning of the process. Different dynamic
trajectories are obtained for different initial state variables from the operating space. A total of 40
different points in the operating space have been randomly selected using a Latin hypercube design,
to represent the potential initial conditions of the system. For a single combination of precursor
mass and carbon nanotube mass, 5 repetitions of the kMC dynamic trajectory are simulated. Since
all dynamic trajectories are collected with the same sampling time, at each discrete time point
in the trajectories a sample mean vector and a sample variance vector can be computed for all
state variables, describing a time series of means and variances for that particular operating point.
This procedure can be repeated for each of the 40 selected operating points and compared with
the expected mean vector and prediction variances described by the predicted dynamic trajectory
for a particular operating point. Based on this comparison a dynamic error metric (DEM) for the
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Figure 4: Local prediction analysis for different repetition levels using random points selected in
the convex hull. Parameter estimator: MLE. (a) Expected mean vector. (b) Prediction variance
vector. — Ordinary Kriging, - - - Universal Kriging. RL = Repetition Level.

expected mean prediction can be defined as

DEM =
1

10 · 40 · kT

10∑
r=1

40∑
j=1

kT∑
k=0

⎡
⎣ 2

√√√√1
d

d∑
i=1

(x̄i,j (k + 1) [xj(k)] − E [x̂i,j (k + 1) |E [x̂j(k)] ,Dr])
2

⎤
⎦
(25)

where the index j describes different dynamic trajectories and r refers to different realizations of
the same combination of settings in the approximated model. Notice that in this analysis, the
evaluation of the expected mean prediction uses the prediction from the previous discrete time
point.

Time Series

( )x k

k

( )x k
2( )xS k

0,1, , Tk k= �

ˆ ˆ( 1) ( 1) | ( ),x k x k k⎡ ⎤+ → +⎣ ⎦x DE
2 2

ˆ( 1) ˆ( 1) ( ),x x kS k kσ +
⎡ ⎤+ → ⎣ ⎦x D

0,1, , Tk k= �

Figure 5: Graphical description of global prediction analysis. The plot shows a one-dimensional
case of the local prediction analysis but it can easily interpreted for multidimensional space.
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Figures 6 and 7 describe the conclusions of the global prediction analysis. In principle, if the
local prediction is accurate over the dynamic region, then we should have a good global prediction
as well. The plots indicate that the uses of linear regression functions makes poor global predictions,
compared with constant regression functions. An possible explanation for this situation is the lack
of information to create a compact minimal dynamic region. Because of the use of these linear
regression functions, the predictions might be extrapolating outside the dynamic region that we
initially defined. Although the addition of the trend functions via h(x) intuitively seems to be useful
for improving dynamics predictions, in our implementation we find that using ordinary kriging in
fact provides more robust prediction by avoiding extrapolation.
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Figure 6: Global prediction analysis for different repetition levels using points from pre-collected
dynamic trajectories. Parameter estimator: MLE. (a) Expected mean vector. (b) Prediction
variance vector. — Ordinary Kriging, - - - Universal Kriging. RL = Repetition Level.
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